

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # SNAFU - Situation Normal: All F’ed Up

Most Performance workload tools were written to tell you the performance at a given time under given circumstances.

These scripts are to help enable these legacy tools store their data for long term investigations.

Note: SNAFU does not depend upon Kubernetes, so you can use run_snafu.py on a bare-metal or VM cluster without relying
on Kubernetes to start/stop pods. So if you need your benchmark to collect data for both Kubernetes and non-Kubernetes
environments, develop in SNAFU and then write ripsaw benchmark to integrate with Kubernetes.

What workloads do we support?

Workload | Use | Status |

—————————— | ———————- | —————— |

UPerf | Network Performance | Working |

fio | Storage IO | Working |

YCSB | Database Performance | Working |

Pgbench | Postgres Performance | Working |

smallfile | metadata-intensive ops | Working |

fs-drift | metadata-intensive mix | Working |

What backend storage do we support?

Storage | Status |

————– | ——– |

Elasticsearch | Working |

Prom | Planned |

how do I develop a snafu extension for my benchmark?

In what follows, your benchmark’s name should be substituted for the name “Your_Benchmark”. Use alphanumerics and
underscores only in your benchmark name.

You must supply a “wrapper”, which provides these functions:
* build the container image for your benchmark, with all the packages, python modules, etc. that are required to run it.
* runs the benchmark and stores the benchmark-specific results to an elasticsearch server

Note: snafu is a python library, so please add the new python libraries you import
to the requirements.txt

Your ripsaw benchmark will define several environment variables relevant to Elasticsearch:
* es - hostname of elasticsearch server
* es_port - port number of elasticsearch server (default 9020)
* es_index - OPTIONAL - default is “snafu-tool” - define the prefix of the ES index name

It will then invoke your wrapper via the command:

`
python run_snafu.py --tool Your_Benchmark ...
`

Additional parameters are benchmark-specific and are passed to the wrapper to be parsed, with the exception of some
common parameters:

	–tool - which benchmark you want to run

	–verbose - turns on DEBUG-level logging, including ES docs posted

	–samples - how many times you want to run the benchmark (for variance measurement)

	–dir – where results should be placed

Create a subdirectory for your wrapper with the name Your_Benchmark_wrapper. The following files must be present in
it:

	Dockerfile - builds the container image in quay.io/cloud-bulldozer which ripsaw will run

	__init__.py - required so you can import the python module

	Your_Benchmark_wrapper.py - run_snafu.py will run this (more later on how)

	trigger_Your_Benchmark.py - run a single sample of the benchmark and generate ES documents from that

In order for run_snafu.py to know about your wrapper, you must add an import statement and a key-value pair for your
benchmark to utils/wrapper_factory.py.

The Dockerfile should not git clone snafu - this makes it harder to develop wrappers. Instead, assume that the image
will be built like this:

`
docker build -f Your_Benchmark_wrapper/Dockerfile .
`

And use the Dockerfile command:

`
RUN mkdir -pv /opt/snafu
COPY . /opt/snafu/
`

The end result is that your ripsaw benchmark becomes much simpler while you get to save data to a central Elasticsearch
server that is viewable with Kibana and Grafana!

Look at some of the other benchmarks for examples of how this works.

how do I post results to Elasticsearch from my wrapper?

Every snafu benchmark will use Elasticsearch index name of the form orchestrator-benchmark-doctype, consisting of the 3
components:

	orchestrator - software running the benchmark - usually “ripsaw” at this point

	benchmark - typically the tool name, something like “iperf” or “fio”

	doctype - type of documents being placed in this index.

If you are using run_snafu.py, construct an elastic search document in the usual way, and then use the python “yield” statement (do not return!) a document and doctype, where document is a python dictionary representing an Elasticsearch document, and doctype is the end of the index name. For example, any ripsaw benchmark will be defining an index name that begins with ripsaw, but your wrapper can create whatever indexes it wants with that prefix. For example, to create an index named ripsaw-iperf-results, you just do something like this:

	optionally, in roles/your-benchmark/defaults/main.yml, you can override the default if you need to:

`
es_index: ripsaw-iperf
`

	in your snafu wrapper, to post a document to Elasticsearch, you MUST:


	```
	yield my_doc, ‘results’





```

run_snafu.py concatenates the doctype with the es_index component associated with the benchmark to generate the
full index name, and posts document my__doc to it.

how do I integrate snafu wrapper into my ripsaw benchmark?

You just replace the commands to run the workload in your ripsaw benchmark
(often in roles/Your_Workload/templates/workload.yml.j2) with the command below.

First, you have to define environment variables used to pass information to
run_snafu.py for access to Elasticsearch:


	```
	
	spec:
	
	containers:
	env:
- name: uuid


value: “{{ uuid }}”





	name: test_user
value: “{{ test_user }}”


	name: clustername
value: “{{ clustername }}”














	{% if elasticsearch.server is defined %}
	
	name: es
value: “{{ elasticsearch.server }}”


	name: es_port
value: “{{ elasticsearch.port }}”








{% endif %}
```

Note that you do not have to use elasticsearch with ripsaw, but this is recommended
so that your results will be accessible outside of the openshift cluster in which
they were created.

Next you replace the commands that run your workload with a single command to invoke
run_snafu.py, which in turn invokes the wrapper to run the workload for as many samples
as you want.


```


args:





	…
	python run_snafu.py
–tool Your_Workload



	{% if Your_Workload.samples is defined %}
	–samples {{Your_Workload.samples}}





{% endif %}
```

The remaining parameters are specific to your workload and wrapper. run_snafu.py
has an “object-oriented” parser - the only inherited parameter is the –tool parameter.
run_snafu.py uses the tool parameter to determine which wrapper to invoke, and
The remaining parameters are defined and parsed by the workload-specific wrapper.

how do I run my snafu wrapper in CI?

add the ci_test.sh script to your wrapper directory - the SNAFU CI (Continuous Integration) test harness
will automatically find it and run it. This assumes that your wrapper supports ripsaw, for now.
At present, the CI does not test SNAFU on baremetal but this may be added in the future.

every ci_test.sh script makes use of environment variables defined in ci/common.sh :

	RIPSAW_CI_IMAGE_LOCATION - defaults to quay.io

	RIPSAW_CI_IMAGE_ACCOUNT - defaults to rht_perf_ci

	SNAFU_IMAGE_TAG (defaults to snafu_ci)

	SNAFU_IMAGE_BUILDER (defaults to podman, can be set to docker)

You, the wrapper developer, can override these variables to use any container image repository
supported by ripsaw (quay.io is at present the only location tested).

NOTE: at present, you need to force these images to be public images so that minikube can
load them. A better method is needed.

In your CI script, ci_test.sh, you can make use of these 2 environment variables:

	SNAFU_IMAGE_TAG (defaults to snafu_ci)

	SNAFU_WRAPPER_IMAGE_PREFIX - just concatenation of location and account

And here is a simple example of a ci_test.sh (they all look very similar):

```
#!/bin/bash
source ci/common.sh
default_image_spec=”quay.io/cloud-bulldozer/your_wrapper:master”
image_spec=$SNAFU_WRAPPER_IMAGE_PREFIX/your_wrapper:$SNAFU_IMAGE_TAG
build_and_push your_wrapper/Dockerfile $image_spec

cd ripsaw
sed -i “s#$default_image_spec#$image_spec#” roles/your_wrapper_in_ripsaw/templates/*

# Build new ripsaw image
update_operator_image

# run the ripsaw CI for your wrapper in tests/ and get resulting UUID
get_uuid test_your_wrapper.sh
uuid=`cat uuid`

cd ..

# Define index (there can be more than 1 separated by whitespaces)
index=”ripsaw-your-wrapper-results”

check_es “${uuid}” “${index}”
exit $?
```

Note: If your PR requires a PR in ripsaw to be merged, you can ask CI to
checkout that PR by adding a Depends-On: <ripsaw_pr_number> to the end of
your snafu commit message.

Style guide
Max line length is 110 to avoid linting issues.

Running linters on your code

Before making a PR, make sure to run linters on your code.

Flake8 configurations are written in tox.ini file.

Run ` flake8 ` command.

This will show the code quality errors. Fix them before making a PR.

To ignore an error, use ` # noqa ` at the end of that code line.

 # Cluster Loader
[cluster loader](https://github.com/openshift/origin/blob/master/test/extended/cluster/) is a tool to load your openshift cluster.

Requirements

Step 1: Please build the binary openshift-tests by following [building binary](https://github.com/openshift/origin/blob/master/HACKING.md#end-to-end-e2e-and-extended-tests)

Step 2: You’ll also need to install following python packages as follows:

`bash
pip install configparser elasticsearch statistics numpy pyyaml
`

Step 3: Set the following necessary environment variables:

KUBECONFIG and point to kubernetes cluster you want to run cluster loader against

Note: oc binary is also required as cluster loader uses openshift client

Additional environment variables:

VIPERCONFIG if you’d like to use custom configuration for running cluster loader.

AZURE_AUTH_LOCATION in case of openshift deployed on azure and pointed to the credentials.

Please read more about how you’ll need to build your custom configuration file at
[openshift docs](https://docs.openshift.com/container-platform/4.2/scalability_and_performance/using-cluster-loader.html)

Note: To index data into elasticsearch you’ll also need to set the environment vars es,*es_port* and es_index
as well as additional identifers such as uuid, clustername and test_user

Invoking cluster loader through snafu:

You can then invoke cl as follows:


	```bash
	python snafu/run_snafu.py < test_name > -t cl





```

Note: additional arguments that can be passed are:

-s or –samples type=int description=number of times to run benchmark, defaults to 1

-d or –dir description=output parent directory, defaults to current directory

-p or –path-binary description=absolute path to openshift-tests binary defaults to /root/go/src/github.com/openshift/origin/_output/local/bin/linux/amd64/openshift-tests

–cl-output description=print the cl output to console (helps with CI) defaults to False if not provided

The output of the run will be in curr_dir/<sample_number>/cl_output.txt so you can also see what’s happening by tailing the file even if –cl-output flag is set to false.

 # Smallfile
[Smallfile](https://github.com/distributed-system-analysis/smallfile) distributed metadata-intensive workload generator for POSIX-like filesystems

Synchronizing parallel smallfile operations

Smallfile wrapper’s allows to launch multiple smallfile’s workloads through a unique command invocation. With the help of Ripsaw it’s possible to launch multiple instances of these workloads in parallel.
Smallfile wrapper uses redis to synchronize these operations. The schema below represents the flow followed to synchronize them.

![sync-diagram](sync-diagram.png)

As represented above. Smallfile’s Snafu wrapper basically blocks execution waiting for a “continue” message in a Redis channel. This message is sent to the channel by the latest smallfile client to finish a workload or sample execution. This is handled by checking the number of channel subscribers is the same as the number of smallfile clients configured in the benchmark.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

